fix(code): use rwlock in storage
Signed-off-by: Alex Chi <iskyzh@gmail.com>
This commit is contained in:
@@ -29,6 +29,17 @@ This architectural design makes LSM tree easy to work with.
|
||||
|
||||
In this tutorial, we will learn how to build an LSM-Tree-based storage engine in the Rust programming language.
|
||||
|
||||
## Prerequisites of this Tutorial
|
||||
|
||||
* You should know the basics of the Rust programming language. Reading [the Rust book](https://doc.rust-lang.org/book/)
|
||||
is enough.
|
||||
* You should know the basic concepts of key-value storage engines, i.e., why we need somehow complex design to achieve
|
||||
persistence. If you have no experience with database systems and storage systems before, you can implement Bitcask
|
||||
in [PingCAP Talent Plan](https://github.com/pingcap/talent-plan/tree/master/courses/rust/projects/project-2).
|
||||
* Knowing the basics of an LSM tree is not a requirement but we recommend you to read something about it, e.g., the
|
||||
overall idea of LevelDB. This would familiarize you with concepts like mutable and immutable mem-tables, SST,
|
||||
compaction, WAL, etc.
|
||||
|
||||
## Overview of LSM
|
||||
|
||||
An LSM storage engine generally contains 3 parts:
|
||||
|
@@ -24,17 +24,17 @@ impl MemTable {
|
||||
}
|
||||
|
||||
/// Get a value by key.
|
||||
pub fn get(&self, key: &[u8]) -> Result<Option<Bytes>> {
|
||||
pub fn get(&self, key: &[u8]) -> Option<Bytes> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
/// Put a key-value pair into the mem-table.
|
||||
pub fn put(&self, key: &[u8], value: &[u8]) -> Result<()> {
|
||||
pub fn put(&self, key: &[u8], value: &[u8]) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
/// Get an iterator over a range of keys.
|
||||
pub fn scan(&self, lower: Bound<&[u8]>, upper: Bound<&[u8]>) -> Result<MemTableIterator> {
|
||||
pub fn scan(&self, lower: Bound<&[u8]>, upper: Bound<&[u8]>) -> MemTableIterator {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
|
@@ -3,9 +3,8 @@ use std::path::Path;
|
||||
use std::sync::Arc;
|
||||
|
||||
use anyhow::Result;
|
||||
use arc_swap::ArcSwap;
|
||||
use bytes::Bytes;
|
||||
use parking_lot::Mutex;
|
||||
use parking_lot::{Mutex, RwLock};
|
||||
|
||||
use crate::iterators::impls::StorageIterator;
|
||||
use crate::iterators::merge_iterator::MergeIterator;
|
||||
@@ -22,6 +21,9 @@ pub struct LsmStorageInner {
|
||||
imm_memtables: Vec<Arc<MemTable>>,
|
||||
/// L0 SsTables, from earliest to latest.
|
||||
l0_sstables: Vec<Arc<SsTable>>,
|
||||
/// L1 - L6 SsTables, sorted by key range.
|
||||
#[allow(dead_code)]
|
||||
levels: Vec<Vec<Arc<SsTable>>>,
|
||||
}
|
||||
|
||||
impl LsmStorageInner {
|
||||
@@ -30,26 +32,32 @@ impl LsmStorageInner {
|
||||
memtable: Arc::new(MemTable::create()),
|
||||
imm_memtables: vec![],
|
||||
l0_sstables: vec![],
|
||||
levels: vec![],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The storage interface of the LSM tree.
|
||||
pub struct LsmStorage {
|
||||
inner: ArcSwap<LsmStorageInner>,
|
||||
inner: Arc<RwLock<Arc<LsmStorageInner>>>,
|
||||
flush_lock: Mutex<()>,
|
||||
}
|
||||
|
||||
impl LsmStorage {
|
||||
pub fn open(_path: impl AsRef<Path>) -> Result<Self> {
|
||||
Ok(Self {
|
||||
inner: ArcSwap::from_pointee(LsmStorageInner::create()),
|
||||
inner: Arc::new(RwLock::new(Arc::new(LsmStorageInner::create()))),
|
||||
flush_lock: Mutex::new(()),
|
||||
})
|
||||
}
|
||||
|
||||
/// Get a key from the storage. In day 7, this can be further optimized by using a bloom filter.
|
||||
pub fn get(&self, key: &[u8]) -> Result<Option<Bytes>> {
|
||||
let snapshot = self.inner.load();
|
||||
let snapshot = {
|
||||
let guard = self.inner.read();
|
||||
Arc::clone(&guard)
|
||||
}; // drop global lock here
|
||||
|
||||
// Search on the current memtable.
|
||||
if let Some(value) = snapshot.memtable.get(key) {
|
||||
if value.is_empty() {
|
||||
@@ -83,31 +91,29 @@ impl LsmStorage {
|
||||
Ok(None)
|
||||
}
|
||||
|
||||
/// Put a key-value pair into the storage by writing into the current memtable.
|
||||
pub fn put(&self, key: &[u8], value: &[u8]) -> Result<()> {
|
||||
assert!(!value.is_empty(), "value cannot be empty");
|
||||
assert!(!key.is_empty(), "key cannot be empty");
|
||||
loop {
|
||||
let snapshot = self.inner.load();
|
||||
if snapshot.memtable.put(key, value) {
|
||||
break;
|
||||
}
|
||||
// waiting for a new memtable to be propagated
|
||||
}
|
||||
|
||||
let guard = self.inner.read();
|
||||
guard.memtable.put(key, value);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Remove a key from the storage by writing an empty value.
|
||||
pub fn delete(&self, key: &[u8]) -> Result<()> {
|
||||
assert!(!key.is_empty(), "key cannot be empty");
|
||||
loop {
|
||||
let snapshot = self.inner.load();
|
||||
if snapshot.memtable.put(key, b"") {
|
||||
break;
|
||||
}
|
||||
// waiting for a new memtable to be propagated
|
||||
}
|
||||
|
||||
let guard = self.inner.read();
|
||||
guard.memtable.put(key, b"");
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// In day 3: flush the current memtable to disk as L0 SST.
|
||||
/// In day 6: call `fsync` on WAL.
|
||||
pub fn sync(&self) -> Result<()> {
|
||||
let _flush_lock = self.flush_lock.lock();
|
||||
|
||||
@@ -115,20 +121,18 @@ impl LsmStorage {
|
||||
|
||||
// Move mutable memtable to immutable memtables.
|
||||
{
|
||||
let guard = self.inner.load();
|
||||
let mut guard = self.inner.write();
|
||||
// Swap the current memtable with a new one.
|
||||
let mut snapshot = guard.as_ref().clone();
|
||||
let memtable = std::mem::replace(&mut snapshot.memtable, Arc::new(MemTable::create()));
|
||||
flush_memtable = memtable.clone();
|
||||
// Add the memtable to the immutable memtables.
|
||||
snapshot.imm_memtables.push(memtable.clone());
|
||||
// Disable the memtable.
|
||||
memtable.seal();
|
||||
snapshot.imm_memtables.push(memtable);
|
||||
// Update the snapshot.
|
||||
self.inner.store(Arc::new(snapshot));
|
||||
*guard = Arc::new(snapshot);
|
||||
}
|
||||
|
||||
// At this point, the old memtable should be disabled for write, and all threads should be
|
||||
// At this point, the old memtable should be disabled for write, and all write threads should be
|
||||
// operating on the new memtable. We can safely flush the old memtable to disk.
|
||||
|
||||
let mut builder = SsTableBuilder::new(4096);
|
||||
@@ -137,31 +141,35 @@ impl LsmStorage {
|
||||
|
||||
// Add the flushed L0 table to the list.
|
||||
{
|
||||
let guard = self.inner.load();
|
||||
let mut guard = self.inner.write();
|
||||
let mut snapshot = guard.as_ref().clone();
|
||||
// Remove the memtable from the immutable memtables.
|
||||
snapshot.imm_memtables.pop();
|
||||
// Add L0 table
|
||||
snapshot.l0_sstables.push(sst);
|
||||
// Update the snapshot.
|
||||
self.inner.store(Arc::new(snapshot));
|
||||
*guard = Arc::new(snapshot);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Create an iterator over a range of keys.
|
||||
pub fn scan(
|
||||
&self,
|
||||
lower: Bound<&[u8]>,
|
||||
upper: Bound<&[u8]>,
|
||||
) -> Result<FusedIterator<LsmIterator>> {
|
||||
let snapshot = self.inner.load();
|
||||
let snapshot = {
|
||||
let guard = self.inner.read();
|
||||
Arc::clone(&guard)
|
||||
}; // drop global lock here
|
||||
|
||||
let mut memtable_iters = Vec::new();
|
||||
memtable_iters.reserve(snapshot.imm_memtables.len() + 1);
|
||||
memtable_iters.push(Box::new(snapshot.memtable.scan(lower, upper)?));
|
||||
memtable_iters.push(Box::new(snapshot.memtable.scan(lower, upper)));
|
||||
for memtable in snapshot.imm_memtables.iter().rev() {
|
||||
memtable_iters.push(Box::new(memtable.scan(lower, upper)?));
|
||||
memtable_iters.push(Box::new(memtable.scan(lower, upper)));
|
||||
}
|
||||
let memtable_iter = MergeIterator::create(memtable_iters);
|
||||
|
||||
|
@@ -1,5 +1,4 @@
|
||||
use std::ops::Bound;
|
||||
use std::sync::atomic::AtomicBool;
|
||||
use std::sync::Arc;
|
||||
|
||||
use anyhow::Result;
|
||||
@@ -14,7 +13,6 @@ use crate::table::SsTableBuilder;
|
||||
/// A basic mem-table based on crossbeam-skiplist
|
||||
pub struct MemTable {
|
||||
map: Arc<SkipMap<Bytes, Bytes>>,
|
||||
sealed: AtomicBool,
|
||||
}
|
||||
|
||||
pub(crate) fn map_bound(bound: Bound<&[u8]>) -> Bound<Bytes> {
|
||||
@@ -30,7 +28,6 @@ impl MemTable {
|
||||
pub fn create() -> Self {
|
||||
Self {
|
||||
map: Arc::new(SkipMap::new()),
|
||||
sealed: AtomicBool::new(false),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -39,19 +36,14 @@ impl MemTable {
|
||||
self.map.get(key).map(|e| e.value().clone())
|
||||
}
|
||||
|
||||
/// Put a key-value pair into the mem-table. If the current mem-table is sealed, return false.
|
||||
pub fn put(&self, key: &[u8], value: &[u8]) -> bool {
|
||||
use std::sync::atomic::Ordering;
|
||||
if self.sealed.load(Ordering::Acquire) {
|
||||
return false;
|
||||
}
|
||||
/// Put a key-value pair into the mem-table.
|
||||
pub fn put(&self, key: &[u8], value: &[u8]) {
|
||||
self.map
|
||||
.insert(Bytes::copy_from_slice(key), Bytes::copy_from_slice(value));
|
||||
true
|
||||
}
|
||||
|
||||
/// Get an iterator over a range of keys.
|
||||
pub fn scan(&self, lower: Bound<&[u8]>, upper: Bound<&[u8]>) -> Result<MemTableIterator> {
|
||||
pub fn scan(&self, lower: Bound<&[u8]>, upper: Bound<&[u8]>) -> MemTableIterator {
|
||||
let (lower, upper) = (map_bound(lower), map_bound(upper));
|
||||
let mut iter = MemTableIteratorBuilder {
|
||||
map: self.map.clone(),
|
||||
@@ -61,7 +53,7 @@ impl MemTable {
|
||||
.build();
|
||||
let entry = iter.with_iter_mut(|iter| MemTableIterator::entry_to_item(iter.next()));
|
||||
iter.with_mut(|x| *x.item = entry);
|
||||
Ok(iter)
|
||||
iter
|
||||
}
|
||||
|
||||
/// Flush the mem-table to SSTable.
|
||||
@@ -71,12 +63,6 @@ impl MemTable {
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Disable writes to this memtable.
|
||||
pub(crate) fn seal(&self) {
|
||||
use std::sync::atomic::Ordering;
|
||||
self.sealed.store(true, Ordering::Release);
|
||||
}
|
||||
}
|
||||
|
||||
type SkipMapRangeIter<'a> =
|
||||
|
@@ -58,7 +58,7 @@ fn test_memtable_iter() {
|
||||
memtable.put(b"key3", b"value3");
|
||||
|
||||
{
|
||||
let mut iter = memtable.scan(Bound::Unbounded, Bound::Unbounded).unwrap();
|
||||
let mut iter = memtable.scan(Bound::Unbounded, Bound::Unbounded);
|
||||
assert_eq!(iter.key(), b"key1");
|
||||
assert_eq!(iter.value(), b"value1");
|
||||
iter.next().unwrap();
|
||||
@@ -72,9 +72,7 @@ fn test_memtable_iter() {
|
||||
}
|
||||
|
||||
{
|
||||
let mut iter = memtable
|
||||
.scan(Bound::Included(b"key1"), Bound::Included(b"key2"))
|
||||
.unwrap();
|
||||
let mut iter = memtable.scan(Bound::Included(b"key1"), Bound::Included(b"key2"));
|
||||
assert_eq!(iter.key(), b"key1");
|
||||
assert_eq!(iter.value(), b"value1");
|
||||
iter.next().unwrap();
|
||||
@@ -85,9 +83,7 @@ fn test_memtable_iter() {
|
||||
}
|
||||
|
||||
{
|
||||
let mut iter = memtable
|
||||
.scan(Bound::Excluded(b"key1"), Bound::Excluded(b"key3"))
|
||||
.unwrap();
|
||||
let mut iter = memtable.scan(Bound::Excluded(b"key1"), Bound::Excluded(b"key3"));
|
||||
assert_eq!(iter.key(), b"key2");
|
||||
assert_eq!(iter.value(), b"value2");
|
||||
iter.next().unwrap();
|
||||
|
Reference in New Issue
Block a user